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1: fuligocandin A
A practical synthesis of the biologically active cycloanthranilylproline derivatives fuligocandines A and B
is described, starting from L-proline and isatoic anhydride, employing an Eschenmoser episulfide contrac-
tion as the key step.

� 2009 Elsevier Ltd. All rights reserved.
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7a: R = SO2Ph
7b: R = 4-NO2-SO2Ph

8a: R = SO2Ph
8b: R = 4-NO2-SO2Ph

Scheme 2. Synthesis of the indole fragment of fuligocandin B. Reagents and
conditions: (i) (a) PPh3, THF, reflux, 24 h, (98%); (b) Na2CO3, H2O/MeOH, rt, �1 h
(90%); (ii) For 7a: NaOH, TBAHS (tetrabutylammonium hydrogen sulfate), PhSO2Cl,
CH2Cl2, rt, 2 h (80%), for 7b: NsCl, Et3N, DMAP, CH2Cl2, rt, 12 h (90%); (iii) compound
5, MeOH, reflux, 48 h (8a: 60%, 8b: 80%).
Fuligocandines A (1) and B (2) (Scheme 1) are two cyclo-
anthranilylproline derivatives isolated in 2004 from the myxomy-
cete Fuligo candida by Nakatani et al. who also established their
structures, largely by extensive NMR and MS studies.1 A recent
study has shown that fuligocandin B (2) sensitizes leukaemia cells
to apoptosis caused by a tumour necrosis factor-related apoptosis-
inducing ligand (TRAIL).2 Intrigued by the interesting biological
activity and our ongoing interest in cycloanthranilylproline-de-
rived natural products we have developed practical syntheses of
both these alkaloids.

Herein, we report the synthesis of fuligocandines A and B using
an Eschenmoser episulfide contraction as the key step. This trans-
formation represents a versatile and efficient method to prepare
vinylogous amides by alkylation of thioamides with an appropriate
electrophilic reactant followed by extrusion of sulfur.3 Although
ll rights reserved.
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Scheme 1. Retrosynthetic analys of fuligocandines A and B.
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Scheme 3. Synthesis of fuligocandines A and B. Reagents and conditions: (i) L-proline, DMSO, 100 �C, 4 h (95%); (ii) P2S5–Py2, �60 �C, MeCN, 4 h, (75%); (iii) NaH, DMSO, rt,
30 min, (quant.); (iv) (a) chloroacetone, rt, 40 min then P(OMe)3, DABCO, 100 �C, 24 h (60%, unoptimized); (b) 8a or 8b, rt, 40 min then P(OMe)3, DABCO, 100 �C, �30 h (20%,
for both, unoptimized).
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the episulfide contraction was first studied by Knott,4 it has gained
widespread use ever since the Eschenmoser–Woodward collabora-
tion on vitamin B12.5

As outlined in Scheme 2 (en route to 2 via 8), 1,3-dichloroace-
tone 4 was selectively combined with triphenylphosphine and
the resulting intermediate phosphonium salt was neutralized with
a base to give the desired mono ylide 5.6 The aldehyde 6 was pro-
tected with benzenesulfonyl chloride to give 7a and with p-nitro-
benzenesulfonyl chloride (NsCl) to give 7b. Both aldehydes 7a
and 7b underwent a smooth Wittig reaction with the phosphorus
ylide 5 when the reaction was conducted in refluxing methanol;
other solvents gave no reaction or poor yields of the required in-
dole derivatives 8. Attempts to obtain this molecule by halogena-
tion of the readily available7 3-(3-oxo-1-butenyl)indole failed.

Next, the pyrrolo-1,4-benzodiazepine derivative 9 was readily
prepared by heating isatoic anhydride and L-proline in DMSO.8 This
diamide was selectively thionated to give the known monothi-
one9a,b 3, using the P2S5–Py2 complex (Scheme 3).

Finally, one-pot alkylation of the thione 3 and subsequent sulfur
extrusion gave fuligocandin A (as the required Z-isomer).10 The
racemate of this compound has recently been synthesized in six
steps starting from azide derivatives.11 Employing our Eschenmo-
ser coupling strategy we also obtained fuligocandin B (as the re-
quired Z- and E-isomer) using the convergent route outlined in
Scheme 3.12 As a bonus, under the conditions employed, the indole
N-protecting group was also removed. Determination of the optical
purities of compounds 1–3, somewhat surprisingly showed that
the chirality at C-11a (Scheme 3) was lost in the last step, probably
due to tautomerization brought on by the basic reaction condi-
tions. We are currently optimizing this final step and are studying
the general applicability of this one-pot alkylation-sulfur extrusion
protocol. Previously used standard conditions (such as t-butoxide
or triethylamine and triphenylphosphine in benzene or xylene at
high temperature) failed in these cases. The use of DBU or DBN
as a base also gave the desired product, but in inferior yields as
compared with DABCO.
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